L-Stable Block Backward Differentiation Formula for Parabolic Partial Differential Equations
نویسندگان
چکیده
منابع مشابه
Application of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملapplication of the block backward differential formula for numerical solution of volterra integro-differential equations
in this paper, we consider an implicit block backwarddifferentiation formula (bbdf) for solving volterraintegro-differential equations (vides). the approach given in thispaper leads to numerical methods for solving vides which avoid theneed for special starting procedures. convergence order and linearstability properties of the methods are analyzed. also, methods withextensive stability region ...
متن کاملVariation of Constants Formula for Functional Parabolic Partial Differential Equations
This paper presents a variation of constants formula for the system of functional parabolic partial differential equations ∂u(t, x) ∂t = D∆u+ Lut + f(t, x), t > 0, u ∈ R ∂u(t, x) ∂η = 0, t > 0, x ∈ ∂Ω u(0, x) = φ(x) u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω . Here Ω is a bounded domain in Rn, the n × n matrix D is block diagonal with semi-simple eigenvalues having non negative real part, the operat...
متن کاملfor parabolic partial differential equations
number of iterationsrequired to meet the convergencecriterion. the converged solutions from the previous step. This significantly reduces the interfacial boundaries, the initial estimates for the interfacial flux is given from scheme. Outside of the first time step where zero initial flux is assumed on all between subdomains are satisfied using a Schwarz Neumann-Neumam iteration method which is...
متن کاملPostprocessing for Stochastic Parabolic Partial Differential Equations
We investigate the strong approximation of stochastic parabolic partial differential equations with additive noise. We introduce post-processing in the context of a standard Galerkin approximation, although other spatial discretizations are possible. In time, we follow [20] and use an exponential integrator. We prove strong error estimates and discuss the best number of postprocessing terms to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ain Shams Engineering Journal
سال: 2016
ISSN: 2090-4479
DOI: 10.1016/j.asej.2015.12.012